M251 Practice Exam $6 \quad 9.6-9.10$
P. Staley

1. Find a first-degree polynomial function P_{1} whose value and slope agree with the value and slope of f at $x=c$. What is P_{1} called?

$$
f(x)=\frac{2}{\sqrt{x}}, c=9
$$

2. Find a first-degree polynomial function P_{1} whose value and slope agree with the value and slope of f at $x=c$. What is P_{1} called?
$f(x)=\tan x, c=-\frac{\pi}{6}$
3. Find the Maclaurin polynomial of degree 3 for the function.

$$
f(x)=e^{-3 x}
$$

4. Find the Maclaurin polynomial of degree 4 for the function.
$f(x)=e^{11 x}$
5. Find the Maclaurin polynomial of degree 5 for the function.

$$
f(x)=\sin (3 x)
$$

6. Find the Maclaurin polynomial of degree 4 for the function. $f(x)=\cos (x)$
7. Find the fourth degree Maclaurin polynomial for the function.
$f(x)=\frac{1}{x+6}$
8. Find the third degree Taylor polynomial centered at $c=1$ for the function.
$f(x)=\sqrt[4]{x}$
9. Find the fourth degree Taylor polynomial centered at $c=2$ for the function.
$f(x)=\ln x$
10. Find the radius of convergence of the power series.

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{n}}{10^{n}}
$$

11. Find the radius of convergence of the power series.

$$
\sum_{n=0}^{\infty} \frac{(4 x)^{2 n}}{(2 n)!}
$$

12. Find the interval of convergence of the power series. (Be sure to include a check for convergence at the endpoints of the interval.)

$$
\sum_{n=0}^{\infty}\left(\frac{x}{7}\right)^{n}
$$

13. Find the interval of convergence of the power series. (Be sure to include a check for convergence at the endpoints of the interval.)

$$
\sum_{n=0}^{\infty} \frac{(6 x)^{n}}{(6 n)!}
$$

14. Find the interval of convergence of the power series. (Be sure to include a check for convergence at the endpoints of the interval.)

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n} n!(x-7)^{n}}{5^{n}}
$$

15. Find the interval of convergence of the power series. (Be sure to include a check for convergence at the endpoints of the interval.)

$$
\sum_{n=1}^{\infty} \frac{(x-10)^{n-1}}{10^{n-1}}
$$

16. Find the interval of convergence of (i) $f(x)$, (ii) $f^{\prime}(x)$, (iii) $f^{\prime \prime}(x)$, and (iv) $\int f(x) d x$ of the power series. (Be sure to include a check for convergence at the endpoints of the interval.)

$$
f(x)=\sum_{n=0}^{\infty}\left(\frac{x}{3}\right)^{n}
$$

17. Find the interval of convergence of (i) $f(x)$, (ii) $f^{\prime}(x)$, (iii) $f^{\prime \prime}(x)$, and (iv) $\int f(x) d x$ of the power series. (Be sure to include a check for convergence at the endpoints of the interval.)
$f(x)=\sum_{n=1}^{\infty} \frac{(-1)^{n+1}(x-7)^{n}}{n}$
18. Find a geometric power series for the function centered at 0 , (i) by the technique shown in Examples 1 and 2 and (ii) by long division.
$f(x)=\frac{6}{8-x}$
19. Find a power series for the function, centered at c, and determine the interval of convergence.
$f(x)=\frac{2}{4+x}, c=10$
20. Use the power series
$\frac{1}{1+x}=\sum_{n=0}^{\infty}(-1)^{n} x^{n}$
to determine a power series, centered at 0 , for the function. Identify the interval of convergence.
$h(x)=\frac{-12}{x^{2}-1}$
21. Use the power series
$\frac{1}{1+x}=\sum_{n=0}^{\infty}(-1)^{n} x^{n}$
to determine a power series, centered at 0 , for the function. Identify the interval of convergence.
$f(x)=\frac{10}{(x+10)^{3}}=\frac{d^{2}}{d x^{2}}\left(\frac{5}{x+10}\right)$
22. Use the power series

$$
\frac{1}{1+x}=\sum_{n=0}^{\infty}(-1)^{n} x^{n}
$$

to determine a power series, centered at 0 , for the function. Identify the interval of convergence.

$$
f(x)=\frac{1}{4 x^{2}+1}
$$

23. Find the Taylor series (centered at c) for the function.

$$
f(x)=e^{10 x}, c=0
$$

24. Find the Taylor series (centered at c) for the function.

$$
f(x)=\sin (x), c=\frac{\pi}{4}
$$

25. Find the Taylor series (centered at c) for the function.

$$
f(x)=\ln \left(x^{6}\right), c=1
$$

26. Use the binomial series to find the Maclaurin series for the function.

$$
f(x)=\frac{1}{\sqrt[10]{1-x}}
$$

27. Use the binomial series to find the Maclaurin series for the function.
$f(x)=\sqrt{1+x^{4}}$
